
SELinux

Igor Vuk

What are we going to talk about?

● Overview
● How it works
● Everything else

Overview (1/8)

● http://selinuxproject.org/page/Main_Page
● Security enhancement to the GNU/Linux OS
● Mandatory Access Control(MAC) framework
● Shipped by Fedora, RHEL{4,5,6}, Debian, …
● Provides the mechanism for supporting access

control security policies, including US DoD
mandatory access controls, through the use of
LSM in the Linux kernel
○ http://en.wikipedia.org/wiki/SELinux

● Included in mainline Linux, as of 2.6

http://selinuxproject.org/page/Main_Page
http://selinuxproject.org/page/Main_Page
http://en.wikipedia.org/wiki/SELinux
http://en.wikipedia.org/wiki/SELinux

Overview (2/8)

● The goal is to create a better form of
system security
○ Tries to protect you from bugs in applications

● The restrictions SELinux imposes are
mandatory
○ Default policy is deny
○ There is no equivalent of a root user
○ Access rules depend on attributes given to a certain

subject and object pair
● The protection stacks with DAC

○ Both are required for an action to be allowed

Overview (3/8)

● Relies on several basic concepts
○ Subjects (i.e. processes)
○ Objects (i.e. files, folders, sockets...)
○ Access vectors (rules)

● Attributes of subjects and objects are called
security contexts

● A combination of kernel modules and user-
space tools
○ Don't forget about the reference policy

● Licensed under the GPL licence

Overview (4/8)

● Mayer, MacMillan, Capman, "SELinux by
Example: Using Security Enhanced Linux"

● Reference monitor concept
○ Subjects
○ Objects
○ Reference validation mechanism

■ Tamperproof
■ Non-bypassable
■ Verifiable

Overview (5/8)

● Reference monitor concept
○ This is where it all started

Overview (6/8)

● This is closely interlinked with military-funded
work for developing a policy that would be
secure enough for classified government
documents

● That's how we got MultiLevel Security (MLS)
○ Based on Bell-LaPadula model

■ Bell, LaPadula, "Secure Computer Systems: Unified Exposition
and MULTICS Interpretation"

● Top secret, secret, confidential, unclassified
○ No read up
○ No write down
○ Write up
○ Read down

Overview (7/8)

● MLS has been implemented plenty of times
○ Trusted Tru64, Trusted HP-UX, Trusted AIX, Trusted

Solaris
● Trusted Solaris components made their way

into Solaris 10 and 11
○ RBAC is turned on by default in Solaris (10 and

newer)
○ There is no way to turn it off

● SELinux does not use MLS by default
○ Type enforcement (TE)
○ Stuff I'm talking about is mostly based on the

targeted policy

Overview (8/8)

● It all started with DTMach
● After DTMach we got FLASK

○ Here TE showed up
● Then we got Linux Security Module (LSM)
● FLASK got ported to LSM "backend"
● SELinux is a reference implementation of

the FLASK security architecture
● http://www.nsa.gov/research/selinux/faqs.

shtml
● SELinux was merged into mainline

http://www.nsa.gov/research/selinux/faqs.shtml
http://www.nsa.gov/research/selinux/faqs.shtml
http://www.nsa.gov/research/selinux/faqs.shtml

How it works (1/11)

● http://www.imperialviolet.
org/2009/07/14/selinux.html

● May X do Y to Z?
○ Subjects (u32 SIDs)
○ Objects (u32 SIDs)
○ Actions

■ Classes (FILE, TCP_SOCKET,...)
■ Permissions (READ, WRITE, ENTRYPOINT,...)

● Security policy

http://www.imperialviolet.org/2009/07/14/selinux.html
http://www.imperialviolet.org/2009/07/14/selinux.html
http://www.imperialviolet.org/2009/07/14/selinux.html

How it works (2/11)

● http://www.imperialviolet.
org/2009/07/14/selinux.html

http://www.imperialviolet.org/2009/07/14/selinux.html
http://www.imperialviolet.org/2009/07/14/selinux.html
http://www.imperialviolet.org/2009/07/14/selinux.html

How it works (3/11)

● Access vector cache (AVC)
○ A hash map
○ From (subject, object, class)
○ To allowed permissions
○ Queried when kernel needs to make security

decisions

How it works (4/11)

● Security identifiers (SIDs)
○ Subjects and objects can be complex
○ They are reduced to an identifier (via a table)
○ That identifier is called a SID
○ A SID table maps from a SID to a matching security

context (the mapping works both ways)

How it works (5/11)

● The security server
○ Triggered if AVC does not have the required

answer cached
○ Security server interprets the policy from userspace
○ Considers booleans
○ Considers constraints

How it works (6/11)

● Booleans
○ Contained in the conditional access vector table
○ Allow runtime modifications to a security policy

without having to load an new policy
○ Can be managed from userspace
○ # getsebool

■ http://manpg.es/getsebool
○ # setsebool

■ http://manpg.es/setsebool

http://manpg.es/getsebool
http://manpg.es/getsebool
http://manpg.es/setsebool
http://manpg.es/setsebool

How it works (7/11)

● Constraints
○ http://danwalsh.livejournal.com/12333.html
○ Used to prevent people from writing bad policies
○ In case of MLS, to enforce rules governing

information flow
○ # neverallow

http://danwalsh.livejournal.com/12333.html
http://danwalsh.livejournal.com/12333.html

How it works (8/11)

● Users and roles
○ SELinux users are separate from {GNU/Linux, UNIX}

users
○ Each user has a set of roles that he may operate

under
○ User can switch to a different role if he has proper

permissions to do so
■ ENTRYPOINT permission

○ # newrole
■ http://manpg.es/newrole

http://manpg.es/newrole
http://manpg.es/newrole

How it works (9/11)

● The SELinux filesystem
○ The kernel communicates with userspace via

filesystem
○ Mounted at /sys/fs/selinux or /selinux
○ # cat /sys/fs/selinux/enforcing
○ # cat /sys/fs/selinux/disable
○ # cat /sys/fs/selinux/load
○ Also some thingies in /proc
○ $ cat /proc/<PID>/attr/current

How it works (10/11)

● User-space object managers
○ Related to objects that are managed outside the

kernel
○ libselinux contains the required functions

■ Object labeling, global policy queries,...

How it works (11/11)

● Policy files
○ http://danwalsh.livejournal.com/35127.html
○ Written in a text-based language
○ Compiled and converted to a binary blob that gets

loaded into the kernel
○ libsepol implements the functions required for

parsing these files

http://danwalsh.livejournal.com/35127.html
http://danwalsh.livejournal.com/35127.html

What we learned so far or what I
may have forgot to mention (1/4)

● SELinux "knows" if you are a user or an
application

● Everybody gets their user, role, type (and MLS)
● We have RBAC, TE and MLS
● Userspace tools such as ps,ls,... have an

additional -Z parameter that shows security
contexts

● Error messages end up in /var/log/messages or
/var/log/audit/audit.log

What we learned so far or what I
may have forgot to mention (2/4)

● Configuration files are stored in
/etc/selinux/

● One can force the relabeling of the entire
filesystem on next reboot
○ # touch /.autorelabel

● There is a number of predefined contexts
that nobody uses :(
○ ~/.cert
○ ~/VirtualMachines

● There are some user-space tools that I feel I
should mention
○ # restorecon

■ http://manpg.es/restorecon
○ # secon

■ http://manpg.es/secon
○ # audit2allow

■ http://manpg.es/audit2allow
○ # setenforce

■ http://manpg.es/setenforce

What we learned so far or what I
may have forgot to mention (3/4)

http://manpg.es/restorecon
http://manpg.es/restorecon
http://manpg.es/secon
http://manpg.es/secon
http://manpg.es/audit2allow
http://manpg.es/audit2allow
http://manpg.es/setenforce
http://manpg.es/setenforce

What we learned so far or what I
may have forgot to mention (4/4)

● We also have audit2why (good luck)
● There is a difference between what a user

can do and what an application can do
○ Once upon a time there was a NULL pointer

dereference…
○ http://eparis.livejournal.com/606.html

● Beware the m4 :)
● Running your system with SELinux disabled

and then enabling it can be challenging

http://eparis.livejournal.com/606.html
http://eparis.livejournal.com/606.html

Some usage examples (1/1)

● sVirt
○ Uses the MLS field for VM separation
○ Each VM gets a unique MCS label
○ http://danwalsh.livejournal.com/30565.html

● Harvard created a PaaS solution that relies
on SELinux
○ http://opensource.com/education/12/8/harvard-

goes-paas-selinux-sandbox
● SE Android
● SEPostgreSQL

http://danwalsh.livejournal.com/30565.html
http://danwalsh.livejournal.com/30565.html
http://opensource.com/education/12/8/harvard-goes-paas-selinux-sandbox
http://opensource.com/education/12/8/harvard-goes-paas-selinux-sandbox
http://opensource.com/education/12/8/harvard-goes-paas-selinux-sandbox

SE Android (1/2)

● http://selinuxproject.org/page/SEAndroid
● http://source.android.

com/devices/tech/security/se-linux.html
● Since 4.3 in mainline AOSP, since 4.4 in

Enforcing mode
● Middleware MAC concept

○ Install-time
○ EOPs

● Restrictions on a per-domain basis
○ root domain
○ application domain

http://selinuxproject.org/page/SEAndroid
http://selinuxproject.org/page/SEAndroid
http://source.android.com/devices/tech/security/se-linux.html
http://source.android.com/devices/tech/security/se-linux.html
http://source.android.com/devices/tech/security/se-linux.html

SE Android (2/2)

● A small number of confined daemons ATM
○ initd
○ installd
○ vold

● Reference policy in SE Android branch
● Vendors are expected to contribute
● Various benefits

○ Less need to check each application in the Google
Play Store

○ Less malware
○ BYOD? (Samsung KNOX etc.)

SEPostgreSQL (1/1)

● http://wiki.postgresql.
org/wiki/SEPostgreSQL_Introduction

● SELinux for PostgreSQL DB
● Remember the part about user-space

object managers?
○ This is an implementation of it

● Access can be configured on row/column
level

● Each DB object gets a security context

http://wiki.postgresql.org/wiki/SEPostgreSQL_Introduction
http://wiki.postgresql.org/wiki/SEPostgreSQL_Introduction
http://wiki.postgresql.org/wiki/SEPostgreSQL_Introduction

The end

● Thank you for listening :)
● Questions?

